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I. Phys. A Math. Gen. 28 (1995) 48914905. Printed in the UK 

Lattice realizations of unitary minimal modular invariant 
partition functions 

David L O'Brient and Paul A Pearcet 
Mathemalics Department, UniversiCy of Melbourne, Parhille, Victoria 3052, Australia 

Received 17 March 1995 

Abstract The conformal spectra of the critical dilute A-D-E lattice models are studied 
numeridy. The results strongly indicate that, in branches one and WO, these models provide 
realizations of the complete A-D-E classification of uniIary minimal modular invariant partition 
functions given by Cappelli, Itzykson and Zuber. In branches three and four the results indicate 
that the modular invariant partition functions factorize Similar factorization results me also 
obtained for lwo-colour lattice models. 

1. Introduction 

It is well established that the critical behaviour of two-dimensional lattice models is 
described by conformal field theory or, to put it another way, that the continuum limits 
of critical lattice models provide realizations of two-dimensional conformal field theories. 
An important class of conformal field theories is the unitary minimal series with central 
charge c < 1. In this case a complete A-D-E classification of the theories has been 
obtained by Cappelli et a1 [I]. In this paper we present compelling numerical evidence 
to show that the critical dilute A-D-E lattice models [2-4] provide realizations of this 
complete A-D-E classification of unitary minimal conformal field theories, as conjectured 
by Roche [31. The layout of the paper is as follows. In section 2 we describe the minimal 
conformal field theories and their A-D-E classification. In section 3 we define the critical 
A-D-E models due to Pasquier [5 ]  and their dilute and two-colour [6] generalizations. 
We also summarize the conjectured modular invariant partition functions for these models. 
Finally, in section 4 we present the numerical results that confirm the conjectured modular 
invariant partition functions. 

I 

2. Conformal field theory 

2.1. Minimal models 

In 1984 Belavin et al [7] introduced the minimal series of conformally invariant field 
theories. These models are characterized by a central charge c < 1 which is restricted to 
the discrete values 

6 ( p  - P')' 
PP' 

c = l -  
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with p and p' coprime positive integers. The conformal weights of the minimal series are 
given by the Kac formula 

D L O'Brien and P A Pearce 

with 

l < r < p - 1  1 < s < p ' - l .  (2.3) 
Moreover, Friedan et al [XI showed that if the theory is unitary, then the central charge is 
further restricted by Ip - p'I = 1, and if in fact p' - p = 1 then 

p' = 4,5.6, . . . . (2.4) 
6 

PYP'- 1) 
C = l -  

The grids of conformal weights for p' = 4,5  and 6 are shown in figure 1, 

$ = 4  p' = 5 c 
I 

1 

3 

2 

T 1 
I 

1 2 3 r  

p' = 6 
S 

1 2 3 4 T  

Figure 1. Grids of conformal weights for the unitary minimal models with p' = 4.5.6 and 
p = p r -  1. ?be table wilh p' = 4. c = I/2 b identified with the king model, p' = 5 .  c = 7/10 
is identified with the uisritical lsing model and p' = 6. c = 415 with the tetra-critical king 
model. The odd rows of the p' = 6 Kac table give the critical exponents of the three-state b u s  
model. 

2.2. A-D-E classification of modular invariant partitionfunctions 

For a conformal field theory on a torus, modular invariance [9] implies further constraints 
on the theory. The requirement of modular invariance is strong enough to fix the operator 
content. In fact, Cappelli et al [ l ]  have obtained a complete classification of minimal 
modular invariant partition functions. Remarkably, they obtain two series in one-to-one 
correspondence with the A-D-E classical Lie algebras, one labelled by ( A ,  G) and the 
other by ( G ,  A ) ,  with Coxeter numbers (p, p')  in each case, and p' > p. The A-D-E 
classification of minimal modular invariant partition functions is shown in table 1. The 
Virasoro characters in this table are defined by 
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(Ad-29 Apr-1) 

(Ag-2, D(P,+Z)/Z) 

(Ai.5, E7)  

( A m  Es) 

( A ,  G )  = (Aio, Ed (C, A )  = ' I 

Table 1. A-D-E classification of minimal modular invarivt partition fuunctions. The central 
charges are c = I - 6 ( p  - p02 /pp ' ,  = x,,, (4) are Wrasom characters and bars denote 
complex conjugates. In this series r, s are Coxeter expnents of ( A .  C) .  Thcrc is a second series 
where r. s are Coxeter exponents of (C, A ) .  In both series p' > p ,  and the unitary minimal 
models have p' - p = 1. 

' &I, AP)  
(D(pt2)/2r A P )  
(E6. A i d  (2.7) 
(E7. A i d  
, (Esl A301 

(4. G) Moduls invariant panition function 
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For this reason we will refer to the ( A ,  G) series as the critical series and the (G, A )  series 
as the tri-critical series. In particular, the modular invariant partition functions of the critical 
and tri-critical three-state Potts models are 

D L O'Brien and P A Pearce 

(2.10) 

(2.1 I )  

Table 2 The Coxeter number h and Coxeter exponents s of the classical A-D-E Lie algebras. 

C h  s 

A L L + I  1.2.3 ,.... L 
D L  Z L - 2  L - 1 . 1 . 3 . 5  ..,., 2 L - 3  
E6 12 I ,  4,5.7,8, I 1  
E, 18 1 ,5 .7 .9 .11 .13 ,17  
Et 30 1,7.11.13,17.19.23.29 

AL 

DL 

E6 

E7 

E8 

1 2 3  L 

1 2 i j . 4 5  
3 

" 
J 2 3 f  5 6  

4 

Figure 2. The Dynkin diagram of the classical A-D-E Lie algebras. The A-D-E graphs 
classify all connected graphs whose ass~ciated adjacency mtrices have eigenvalues strlctly less 
than WO, The eigenvalues ofthe adjacency matrices are. in fact, given by Ims(sn/h) where 
s ranges over the Coxeter exponents. 

The A-D-E classification of unitary minimal conformal field theories gives an 
exhaustive list of theories with c < I. In other words, this is a complete list of universality 
classes giving all possible critical behaviours for two-dimensional statistical systems with 
c c 1. A natural question to ask is whether a solvable lattice model can he found as a 
representative of each universality class allowed by the A-D-E classification. 
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3. A-D-E lattice models and their modular invariant partition functions 

3.1. Pasquier’s A-D-E models 

By a remarkable coincidence, in the same year that Belavin et al introduced the minimal 
conformal field theories, Andrews, Baxter and Forrester (ABF) [IO] solved the first infinite 
hierarchy of lattice models in the form of restricted solid-on-solid (RSOs) models. The spins 
in these models take values on the A L  Dynkin diagram and are subject to the constraint 
that the state of adjacent spins on the square lattice must be adjacent on the A L  diagram. 
H u e  [I11 showed that the critical behaviour of these L height Rsos models is precisely 
described by the unitary minimal series. Moreover, it turns out that the modular invariant 
partition functions of the ABF RSOS models give the (A‘-, , A‘) series with L = 3,4,5. . . ._ 

The lattice realizations of this critical series of modular invariant partition functions 
were completed in 1987 by Pasquier [5] who generalized the ABF models by constructing 
solvable lattice models whose states take values on the A-D-E graphs. The A6 models 
of Pasquier are just the critical ABF RSOS models. We note that, although the A and D 
models admit off-critical elliptic extensions, the exceptional E models can only be solved 
at criticality. The face weights of Pasquier’s critical A-D-E models are given by 

u b  
where the spins a. b. c ,d  take values on the given A-D-E graph. The parameter U is called 
the spectral parameter. In the branches of interest here, the spectral parameter lies in the 
interval 0 < U < I .  The adjacency matrices are given by 

a,  b connected I ’  0 otherwise. Au.h = (3.2) 

The non-negative components So of the Perron-Frobenius eigenvector are determined by 
A o.h S h -ZCOSIS, - (3.3) 

I = r / h  (3.4) 

h 
where 2cosh is the largest eigenvalue of the adjacency matrix and 

is called the crossing parameter. The Coxeter number h is given in table 2. 

Ai = .-.-. = Critical Ising 

6 = u4 = nicritical Hard Squares 

D 4 =  q4 = Critical 3-State Potts 
3 

Figure 3. Some prototype classical A-D-E lattice models. 

Pasquier’s A-D-E models include some much studied models in statistical mechanics: 
some prototypes are shown in figure 3. The modular invariant partition functions of 
Pasquier’s critical A-D-E models precisely realize the ( A ,  G) series of Cappelli et al. 
However, for many years realizations of the (G, A )  series were missing. 
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3.2. Dilute A-D-E models 

In 1992 Wamaar er a1 [2] and Roche [3] independently obtained a second series of solvable 
lattice models whose states take values on the A-D-E graphs. These lattice models are 
cdled the dilute A-D-E models. The face weights of h e  dilute A-D-E lattice models at 
criticality are given by 

D L 0 'Brien und P A Pearce 

. ~ ,  \ 

.d c w ( a b 1 U) = PI(U)&z,b.c,d P.L(U)$.b,eAo.d f B ( U ) & , c . d A a , b  + f i P 4 ( u ) & , d A a , b  

P6(U)8a,b&.dAo.c + m ( u ) & , d & b A o , b  

where, as before, the adjacency matrix is 
1 U ,  b adjacent 
0 otherwise 

' 

[ Ao.b = 

and the Perron-Frobenius vector is given by 

The effective adjacency graph is given by adding a loop to each node of the A-D-E graphs, 
that is. the soin states at adiacent sites of the lattice are either the same or adjacent on the 
A-D-E graph. The generalized Kronecker delta is 

a = b = c =  ... 
8o.b.e .... - 

and the trigonomehic weight functions are 

. ,  
sin(22 - U) sin(31- U) sin U sin@ - U) 

sin(2l) sin(31) ' P 9 ( U )  = - 
ps(u) = sin(21) sin(31) 
Here E = &l; the choices E = 1 in the U > 0 branches and 6 = - 1  
ensure positive Boltztnann weights at the isotropic points U = y 12. 

The dilute A-D-E models are solvable for two choices of A 
(h - 1 ) ~  

branches one and four 

branches two and three. (h + 1)lr 
4h 

t h e u c O  

(3.8) 

(3.9) 

,aches 

(3.10) 

The physical branches are summarized in table 3. The central charges of these models in 
branches one and two are given by [2,4,12,13] 

branch one 

branch two. 

6 
h(h + 1) 

1 -  

c =  [ 6 
1 -  

h(h - 1) 

(3.11) 
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Table 3. Physical branches and central charges of the dilute A-D-E ianice models. 

Crossing parameter Inversion paint Physical region Central charge 

6 c = l - -  
h ( h + I )  U E (0, Y )  

6 c = 1 - -  
h ( h -  1) Bmnchtwo A = -  :( I +  1) y = 3 X  U E (0. Y )  

3 6 Branchthree A = -  I +  c = - - -  
2 h ( h + I )  
3 6 
2 h ( k - I )  

Branchone A = f (1 - i) 

Branchfour . l = : ( l - l )  y = 3 A - n  n ~ ( y . 0 )  c=--- 

y = 3 A  

;( t) y = 3 1 - x  U E ( Y . 0 )  

This suggests identifying the universality classes of the first few dilute A-D-E models as 
branch two : A3 =critical Ising 
branch one : A, = tri-critical king 

branch one : 0 4  = tri-critical threestate Potts 

c = 1/2 
c = 7/10 

(3.12) 
branch two : 0 4  = critical threestate Pot6 c = 4/5 

c = 6/7. 
Notice that the dilute A3 and D4 are not the usual Ising and three-state Pot& models, they 
just have the same 2 2  and 23 symmetries and lie in the same universality classes. 

The dilute A-D-E lattice models in branch two do, in fact, give a second realization of 
the ( A ,  G) series of Cappelli el al. More importantly, as we show in the next section, the 
dilute A-D-E lattice models in branch one precisely realize the missing (G. A) series. The 
dilute A-D-E models thus give a complete realization of all unitary minimal conformal 
field theories. 

3.3. Two-colour A-D-E models 

The two-colour models, obtained by Wamaar and Nienhuis [6], are dense RSOS models 
built on pairs of A-D-E adjacency graphs. Each site on the lattice carries two heights, one 
from each graph. In moving between adjacent sites, one of the heights remains constant 
and the other varies as permitted by its corresponding adjacency graph. If G1 and GZ are 
the adjacency matrices of the two graphs, the effective adjacency matrix of the two-colour 
model is, therefore, A = A' + A Z ,  where 

A ' = G ' @ I  A Z = I @ G 2  (3.13) 
With a slight abuse of notation we will denote such a model by GI 0 G2. The Perron- 
Frobenius vector of A is the tensor product S = SI @ S2 of the Perron-Frobenius vectors of 
the underlying graphs. In constructing the two-colour models it is assumed that the graphs 
G' and G2 have the same largest eigenvalue and hence the same Coxeter numbers. 

Explicitly, the state at each site is given by an ordered pair a = (q, a2) so that 
S" = s:,sz; (3.14) 
A:,b = G",,b,,L*h-,' i (3.15) 

In terms of these entities, the face weights of the critical lattice model are given by 

(3.16) 
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where 
sin U sin(31- U) 

=' sinAsin31 
sin@ - U) sin(3h - U )  

sin 1 sin 31 
sin(3h - U) 

sin 31 

p2(u) = 

P 3 @ )  = 

P 4 W  = - 

&(U) = -€-. 

sin U sin(21 - U) 
sin 1 sin 31 

sin U 
sm31 

(3.17) 

Table 4. Physical branches and central charges of lhe two-colour A-D-E lattice models 
~ _____ 

Crossing parameter Inversion point Physical reglon Central charge 

Branchone h =  - I( I -:) y = 3 h - n  u ~ ( O , y )  c=Z(I - - )  6 

Branchtwo i=- ;( 1 -:) y = 3 A - k  u E ( y . 0 )  c=2(I--) 

h ( h t  1) 
6 

h ( h - 1 )  

The two-colour models have two physical regimes as summarized in table 4 in terms 
of the Coxeter number h of the underlying graphs. The choice of the sign factor E = il 
such that E = 1 in branch I and E = -I in branch two ensures that the Boltzmann weights 
are positive at the isotropic points U = y/Z.  

3.4. Conjectured modular invariant partition functions 

The partition function of a critical lattice model on a finite P x e' periodic lattice or torus 
can be written as 

z ~ . ~ ,  - exp(-et'f)Z(q) (3.18) 

where f is the bulk free energy and Z(q) is a universal term describing the leading finite- 
size corrections in the limit of e ,  e' large with the aspect ratio S = e'/t fixed. The argument 
q is the modular parameter. For a spatially isotropic model, it is simply related to the aspect 
ratio 6 by 4 = exp(-2rr8). 

The modular invariant partition functions of the dilute A-D-E models built on the 
classical graph G with Coxeter number h are conjectured to be 

branch one : (G, Ah) 
branch three : (G, Ah) X (Az ,  A3) 

branch two : (Ah-2, G) 
branch four : (Ah-2, G )  x (Az. A3). 

(3.19) 

Here the modular parameter is 
r 

q = exp(2rrir) 'c = -exp[i(rr - e ) ]  e 
and the effective angle 0 [14] is given by 

Z U  - branches one and two 

- branches three and four. 31-n 

(3.20) 

(3.21) 
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The modular invariant partition functions of the two-colour A-D-E models are 
conjectured to be as follows, where once again h is the Coxeter number of the underlying 
graphs GI and G Z :  
branch one : (GI, Ah) x (G'. Ah) 

Here the modular parameter q is as before, but now the effective angle is 
branch two : (Ah-2 ,  G') x (Ah-2,  G'). 

branch one 

branch two. 
HU 

~ 

31 - 7.j~ 

(3.22) 

4. kumericd results 

The central charges and scaling dimensions of critical lattice models can be extracted [ 151 
from the finite-size corrections to the eigenvalues of the row transfer matrices 

(4.1) 

Specifically, the finite-size corrections to the largest eigenvalue A0 of a periodic transfer 
matrix with N faces take the form 

where j is the free energy, c is the central charge and e(u) is the effective angle as defined 
in section 3.4. At an isotropic point for a square ordered phase, U is fixed such that 8 = ~ / 2 ,  
The finitesize corrections to the next-largest eigenvalues A,, with n = 1,2,3, . . . take the 
form 

(4.3) 

where x, = A + 
scaling dimension takes fractional values, whereas the spin is restricted to integer values. 

appropriate inversion relations 

and s, = A - are respectively the scaling dimension and spin. The 

The free energies of the dilute and two-colour models are calculated by solving the 

K ( u ) K ( - u )  = p(u)p( -U)  K ( U )  = ~ ( y  - U )  (4.4) 
where j ( u )  = - logK(u) is the free energy and 

sin(2h - U) sin(3h - U) 
sin 21 sin 31 

sin(h - u )  sin(31 - u )  

dilute models 

two-colour models 
= I sin 1 sin 31 

The free energy of the critical dilute models is given by 141 

(4.5) 

dx (4.6) 
cosh(x - 5h)x cosh Ax sinh(y - u)x sinh ux 

x sinh xx cosh y x  

and the free energy of the critical two-colour models is given by 
cosh@ - 2h)x cosh2(z - 21)n sinh(y - u ) x  sinhux 

x sinh x x  cosh y x  dx. (4.7) L f ( u )  = -2 

In these expressions y is the inversion point in the appropriate branch. The dilute and two- 
colour models have, respectively, four and two critical branches. Tables 3 and 4 summarize 
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the crossing parameters, inversion points and central charges in each of the physical branches 
in terms of the Coxeter numbers h of the underlying graphs as given in table 2. 

Given the free energy, the central charge c is estimated by calculating a sequence of 
largest eigenvalues Ao for increasing values of N and applying a suitable extrapolation 
scheme. Once the central charge is determined, (4.3) then allows estimation of the scaling 
dimensions by a similar procedure using the next-largest eigenvalues An. To obtain accurate 
values for the central charges and scaling dimensions we need to calculate eigenvalues for N 
as large as possible. It is, therefore, convenient to prediagonalize the transfer matrices into 
block diagonal form using the eigenvectors of the shift operator Q = T(0) and, in the case 
of the A and D models, the reflection operator R which arises from the Zz symmetry of 
the A and D Dynkin diagrams. Taken together, these operators reduce the transfer matrices 
to 2N diagonal blocks. 

Once a sequence of eigenvalues for increasing N is obtained, equations (4.2) and (4.3) 
imply that, for large N ,  the graph of (logA,/N + f )  against l / N 2  should approximate a 
line through the origin. However, since the O ( N - ~ )  corrections tend to vanish fairly slowly, 
a parabolic fit gives better results. A simple extrapolation scheme to extract the I / N  term 
is to discard all but the last two eigenvalues in the sequence and take the linear coefficient 
of the parabola passing through these two points and the origin. We have performed this 
calculation to find numerically the central charges of a variety of dilute and two-colour 
models as well as the scaling dimensions of the dilute A3, A.+, 0 4 ,  and two-colour A4 8 A4 

models. The approximate central charges are summarized in tables 5-7 and the approximate 
scaling dimensions are summarized in tables 8-14. 

D L O'Brien and P A Pearce 

Table 5. Central chxges of the dilute A-D-E lattice models in the U z 0 branches. The 
numelical appmximations are in excellent agreement with the exact values [2] summarized in 
table 3. 

Branch one Branch two 

Model Approx. E m f  Approx. Exact ", 
A3 0.699999 7/10 0.7 0.500000 In 0.5 12 
An 0.799997 415 0.8 0,699997 7/10 0.7 IO 
As. D4 0.857140 U7 0.857143.., 0.799997 415 0.8 10 
A i ,  Dr 0.916660 11/12 0.916666 ... 0.892849 25/28 0,892857 ... 9 
All. D7, E6 0.961531 25/26 0.961538 . . .  0.954536 21122 0,954545 ... 9 
Ail, DIO. E1 0.982448 56111 0.982456... 0.980383 50/51 0.980392 ... 9 

Table 6. Central charges of the dilute A-D-E laltice models in the U -= 0 branches. 

Branch three Branch four 

Model AOWOX. Exacl AOOrOX. Exact ".. 
A, 1.232 615 I2 1.ow I I 12 
A; 1.327 13/10 1.3 1.199 615 I .2 10 
Ai. Da 1.377 19/14 1.357,. . 1.299 13/10 1.3 10 .. . 
Ai l  Ds 1.432 17/12 1.417. . .  1.391 39/28 1.393. .. 8 
A i l .  07, E6 1.470 19/13 1.462.. . 1,453 16111 1.455 ... 8 
A n .  Diu, E7 1.487 169/114 1.482 . . .  1.479 151/102 1.480 . . .  8 
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Table I. Central charges of the two-colour A-D-E lanice models. Here the notation [ G .  G'] 
means either G or G'. The approximations match well the predictions summarized in table 4. 

Model 

Branch one Branch two 

Approx. Exact Approx. Exact ", 
AI @ A3 1.423 715 1.4 0.9991 1 1 8 
A 4 @ A 4  1.606 8/5 1.6 1.3982 715 1.4 8 
[ A S ,  0 4 1  @ [ A s .  0 4 1  1.712 I217 1.714 ... 1.5930 8/5 1.6 6 
[Ai , ,  D ~ . E ~ I @ [ A I I .  D,. E d  1.914 25/13 1.923 ... 1.8993 21/11 1.909 . . .  6 

Table 8. Scaling dimensions and multiplicities for the dilute A3 model in the U > 0 branches. 
We expect branch one to correspond to the partition function labelled by ( A ] ,  Ad) and branch 
two to that labelled by (A2, A3). These correspondences may be verified by comparison of the 
above approximations to the exact exponents which arise in the partition function expansions of 
(4.9). 

Branch one Branch two 

Approx. Exact Mult. Approx. Exact Mnlt. 

0.0749999 3/40 0.075 1 0.125999 118 0.125 I 
0.200000 115 0.2 1 0.998457 I 1 1 
0.874980 7l8 0.875 1 1.12489 918 1.125 2 
1.07505 43/40 1.075 2 2.01084 2 2  2 
1.200 03 615 1.2 2 1.988 28 2 2  2 
1.199 94 615 1.2 I 2.13060 1718 2.125 2 
1.87541 15/8 1.875 2 

Table 9. Scaling dimensions and multiplicities for the dilute A3 model in the U c 0 branches. 
Comparison with the expansions (4.10) shows branch four to be in excellent agreement with the 
partition funclion product (A2.  A ] )  x ( A l .  A3), and branch three m be in reasonable agreement 
with (A3, A41 x (Az, A3). 

Branch Wee Branch four 

Approx. Exact Mult. Approx. Exact Mult 

0.1270 1 I8 0.125 I 0.1250 118 0.125 1 
0.2033 115 0.2 1 0.2500 114 0.25 1 
0.2401 1 15 0.2 I 1.0000 I 1 1 

1.0000 I I 1 
1.1250 918 1.125 I 
1.1246 918 1.125 2 
1.1248 918 1.125 I 
1.1210 9/8 1.125 2 
1.2450 5/4 1.25 2 
1,2424 514 1.25 2 
1.9987 2 2 2 
1.9964 2 2 2 
1.9949 2 2 1 

0.0778 3/pO 0.075 I 0,1250 118 0.125 1 

The estimates of the scaling dimensions x, allow the first few terms of the isotropic 
modular invariant partition functions to be determined, since these partition functions are 
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Bble IO. Scaling dimensions and multiplicities for the dilute A, model in the U > 0 branches. 
Branch one agrees well with the expansion (4.9) of the partition function ( A b .  As), as does 
branch two with the expansion of (A,, AA). 

Branch one Branch two 

Approx. Exact Mull. Approx. Exact Muit. 

0.050000 1/20 0.05 I 0.074999 3/40 0.075 I 
0.013333 2/15 0.133... 1 0.199997 1/5 0.2 I 
0.250000 1/4 0.25 1 0.873958 7/8 0.875 1 
0.799969 4/5 0.8 1 1.075250 43/40 1.075 2 
1.05006C 21/20 1.05 2 1.199460 6/5 1.2 2 
1.049920 21/20 1.05 1 1.196920 6/5 1.2 I 
1.133360 17/15 1.133., . 2 

Table 11. Scaling dimensions and multiplicities for the dilute AA model in Lhe U .= 0 branches. 
The data for branch four agree very well with the expansion (4.10) of (Az,  Ah) x ( A z ,  A, ) ,  and 
the dati for branch 3 agree reasonably with the expansion of ( A i .  A i )  x (AL A d  

~ 

Branch three Branch four 

ADOIOX. Exact Mdt. Aourox. Exact Mull. _. .. 
0.0501 1/20 0.05 I 0.07500 3/40 0.075 1 
0.1256 i/a 0.12s I 0.12500 1/8 0.125 I 
0.1357 2/15 0.133 ... I 0.19985 1/5 0.2 1 
0.1918 7/40 0.175 I 0.u)OOO 115 0.2 1 
0.2498 1/4 0.25 1 0.32500 13/40 0.325 I 

0.99984 1 I 1 
0.99803 I 1 1 
1,07508 43/40 1.075 1 
1.09886 43/40 1.075 2 

0.87506 7/8 0.875 I 

Table U. Scaling dimensions and multiplicities for the dilute Dd model in the U > 0 branches. 
Comparlson with the partition function expansions (4.9) Shows branch one to compond to 
(D4, A d ,  and branch two to (A4 ,  D I ) ;  these are respectively Ui-critical and critical three-state 
Pons. 

Branch one Branch two 

Approx. Exact MuL Approx. Exact Mult. 

0,095234 2121 0.095238 ... 2 0.13333 2/15 0.133.,. 2 
0.285711 2/7 0.285714. .. 1 0.79a273 45 0.8 I 
0.951915 2oR1 0.952381 ... 2 1,1335 17/15 1.133.. . 4 
1.09586 W21 1.09524 ... 4 1.32242 4/3 1.33 ... 2 
1.28583 9fl 1.28571 ... 2 1.79266 9/5 1.8 2 

simply 

Z(q) = q - C ” 2  ( 1 + g d 4  (4.8) 

where d. are the multiplicities. For the dilute models, we see that branches one and two 
are described by the series of partition functions in table 1 and that the partition functions 
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Table 13. Scaling dimensions ana multiplicities for the dilute D,  model in the U < 0 branches. 
Branch four agrees well with the expansion (4.10) of ( A 4 . 0 , )  x (A2, A A  and branch &ree 
agrees rearonably with thnf of (Dn. A d  x (Az ,  A,). 

Branch t h e  Branch four 

Approx. Exact Mult. Approx. Exact Mult. 

0.09603 2/21 0.09524 .. 2 0.12450 1/8 0.125 I 
0.12520 1/8 0.125 1 0.13327 2/15 0,13333 ... 2 
0.24414 37/168 0.2"24., . 1 0.25841 31/120 0.25833... 2 
0.244 14 37/168 0.22024.. . I 0.80006 45 0.8 1 
0.28376 2/7 0.28571.. , I 0.92528 37/40 0.925 I 

0.99971 I I 1 
1.11698 9/8 1.125 2 
1.13514 17/15 1,13333 ... 2 

Table 14. Scaling dimensions and multiplicities for the two~olour A4 @ Ai model. These 
agree well with the panition function expansions of ( A i .  As)  x (Ad, A l )  in branch one and 
(As, A d  x (As, A4) in branch two. 

Branch one Banch two 

Approx. Exact Mult. Approx. Exact M"lt 

0.0499 1/20 0.05 2 0.0750 3/40 0.075 2 
0.1016 1/10 0.1 1 0.1500 3/20 0.15 I 
0.1333 2/15 0.133 ... 2 0.1996 1/5 0.2 2 
0.1877 11/60 0.1833 . . .  2 0.2750 11/40 0.275 2 
0.2489 114 0.25 2 0.4000 2/3 0.4 1 
0.2798 4/15 0.266 ... 1 0.8839 7/8 0.875 2 
0.3107 3/10 0.3 2 0.9412 19RO 0.95 2 

1.0807 43/40 1.075 4 

in branches three and four are the product of the critical king partition function (A2, As) 
with those of branches one and two respectively. 

Dilute AB, therefore, has the following modular invariant partition functions in its four 
branches: 

branch one : (As, A4) branch two : (Az, A3) 
branch three : (A3. A4) x (Az, A,) branch four : (A? ,  A3) x (Az. A3). 

Similarly, dilute Ad has the partition functions 

branch one : (A4, AS) 

branch three : (A4. AS)  x ( A Z ,  A3) 

branch two : (A3, A4) 

branch four : (A3 .  A4) x (A2,  A,) 

and dilute 0 4  has the partition functions 

branch one : ( 0 4 ,  A6) 
branch three : ( 0 4 ,  A6) x (A2,  A3) 

branch two : (A4,  D4) 
branch four : (A4. D4) x (Az ,  A3).  



The products of each of these with the king partition function ZI = (Az. A3) yield 

(4.10) 

We find that the results for the two-colour models are similar to those of the dilute models. 
The modular invariant partition functions are all found to be a product of two partition 
functions in table 1 with the same central charge. Thus, for example, the partition functions 
of the two-colour model built on the graph A4 8 A4 are given by 

branch one : (Ah, As) x (A4, As) 
Our numerical estimates for the scaling dimensions of this model are summarized in table 14. 
The expansions of the isotropic partition function products are 
branch one : Z(q) = q"" [ 1 + 2q'lZ0 + q1 / l0  + Zq"I5 + 2q'1/60 + 2q'l4 + q4/15 

11/10 + q2/5 + 247/8 branch two : Z(q) = q-?lM, [1 + Zq3lm + q3/20 + 24'" + Zq 

branch two : (As, A4) x (A3, A4). 

11 

+2q19/m + 0(~43/40 )I 

+2q3/lo + 0(~23/60 

Similarly, in the case of the model built on D4 8 D4, the modular invariant partition 
functions are given by 

and in the case of the model built on As 8 0 4  by 

All of OUT numerical results are consistent with the conjectured modular invariant partition 
functions summarized in section 1. 

branch one : (04, A6) x (4. As) branch two : (A4, Dp) x (A4. D4) 

branch one : (As. A6) x (D4, A6) branch two : (A4, AS) x (A4, 04). 

5. Conclusion 

We have presented numerical evidence that the critical dilute A-D-E lattice models in the 
U > 0 branches provide a realization of both the ( A ,  G) and the (G, A) series of modular 
invariant partition functions in the classification of Cappelli eta1 [l]. In the U .c 0 branches 
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we have seen that the modular invariant partition functions are products of the (Az, A3) 
partition function with members of the ( A ,  G) and (G,  A )  series. Furthermore, we have 
seen that the modular invariant partition functions of the two-colour A-D-E lattice models 
at criticality are squares of members of the ( A ,  G) and (G, A) series. 

Since these are all exactly solvable models, it would be interesting to see some exact 
calculations of scaling dimensions to compare with the predicted values. Indeed, such 
calculations have been performed in the case of the dilute A models in [13, 161. 

Here we have only considered unitary minimal conformal field theories. It would also 
be interesting to see whether, by varying the crossing parameter, the dilute A-D-E lattice 
models might provide realizations of non-unitaty minimal conformal field theories. 
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